Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
2.
Biomedicines ; 10(6)2022 Jun 06.
Article in English | MEDLINE | ID: covidwho-1883994

ABSTRACT

Despite intense investigation, the pathogenesis of COVID-19 and the newly defined long COVID-19 syndrome are not fully understood. Increasing evidence has been provided of metabolic alterations characterizing this group of disorders, with particular relevance of an activated tryptophan/kynurenine pathway as described in this review. Recent histological studies have documented that, in COVID-19 patients, indoleamine 2,3-dioxygenase (IDO) enzymes are differentially expressed in the pulmonary blood vessels, i.e., IDO1 prevails in early/mild pneumonia and in lung tissues from patients suffering from long COVID-19, whereas IDO2 is predominant in severe/fatal cases. We hypothesize that IDO1 is necessary for a correct control of the vascular tone of pulmonary vessels, and its deficiency in COVID-19 might be related to the syndrome's evolution toward vascular dysfunction. The complexity of this scenario is discussed in light of possible therapeutic manipulations of the tryptophan/kynurenine pathway in COVID-19 and post-acute COVID-19 syndromes.

3.
Nat Immunol ; 23(5): 679-691, 2022 05.
Article in English | MEDLINE | ID: covidwho-1878539

ABSTRACT

Here we report the identification of human CD66b-CD64dimCD115- neutrophil-committed progenitor cells (NCPs) within the SSCloCD45dimCD34+ and CD34dim/- subsets in the bone marrow. NCPs were either CD45RA+ or CD45RA-, and in vitro experiments showed that CD45RA acquisition was not mandatory for their maturation process. NCPs exclusively generated human CD66b+ neutrophils in both in vitro differentiation and in vivo adoptive transfer experiments. Single-cell RNA-sequencing analysis indicated NCPs fell into four clusters, characterized by different maturation stages and distributed along two differentiation routes. One of the clusters was characterized by an interferon-stimulated gene signature, consistent with the reported expansion of peripheral mature neutrophil subsets that express interferon-stimulated genes in diseased individuals. Finally, comparison of transcriptomic and phenotypic profiles indicated NCPs represented earlier neutrophil precursors than the previously described early neutrophil progenitors (eNePs), proNeus and COVID-19 proNeus. Altogether, our data shed light on the very early phases of neutrophil ontogeny.


Subject(s)
Antigens, CD , Bone Marrow , Cell Adhesion Molecules , Cell Differentiation , Neutrophils , Receptor, Macrophage Colony-Stimulating Factor , Receptors, IgG , Bone Marrow Cells , COVID-19 , GPI-Linked Proteins , Humans , Interferons , Neutrophils/cytology
4.
Cancer Immunol Res ; 10(4): 384-402, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1775028

ABSTRACT

Vaccination has been a game changer in our efforts to address the coronavirus disease 2019 (COVID-19) pandemic. However, the disease might still represent a clinical crisis for several more years, in part because of the inevitable emergence of variants capable of evading the preexisting immunity. Drugs affecting viral spread will help curtail transmission, but therapeutics are needed to treat the more severe cases requiring hospitalization. A deep analysis of the evolving immune landscape of COVID-19 suggests that understanding the molecular bases of the distinct clinical stages is paramount if we are to limit the burden of inflammation, which can lead to death in frail individuals, according to age, sex, and comorbidities. Different phases can be defined using immune biomarkers and need specific therapeutic approaches, tailored to the underlying immune contexture.


Subject(s)
COVID-19 , Hospitalization , Humans , Pandemics , SARS-CoV-2 , Vaccination
6.
Cell Death Differ ; 29(2): 420-438, 2022 02.
Article in English | MEDLINE | ID: covidwho-1406388

ABSTRACT

Inflammatory responses rapidly detect pathogen invasion and mount a regulated reaction. However, dysregulated anti-pathogen immune responses can provoke life-threatening inflammatory pathologies collectively known as cytokine release syndrome (CRS), exemplified by key clinical phenotypes unearthed during the SARS-CoV-2 pandemic. The underlying pathophysiology of CRS remains elusive. We found that FLIP, a protein that controls caspase-8 death pathways, was highly expressed in myeloid cells of COVID-19 lungs. FLIP controlled CRS by fueling a STAT3-dependent inflammatory program. Indeed, constitutive expression of a viral FLIP homolog in myeloid cells triggered a STAT3-linked, progressive, and fatal inflammatory syndrome in mice, characterized by elevated cytokine output, lymphopenia, lung injury, and multiple organ dysfunctions that mimicked human CRS. As STAT3-targeting approaches relieved inflammation, immune disorders, and organ failures in these mice, targeted intervention towards this pathway could suppress the lethal CRS inflammatory state.


Subject(s)
COVID-19/physiopathology , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/metabolism , Inflammation/metabolism , STAT3 Transcription Factor/metabolism , Aged , Aged, 80 and over , Animals , COVID-19/metabolism , Caspase 8/metabolism , Cytokines/immunology , Cytokines/metabolism , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , SARS-CoV-2/immunology , STAT3 Transcription Factor/genetics , Signal Transduction
7.
Curr Opin Allergy Clin Immunol ; 21(5): 418-425, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1315706

ABSTRACT

PURPOSE OF REVIEW: This review aims to provide an updated report in regards to the correlation between vaccines and anaphylaxis and the related risk in the population. RECENT FINDINGS: Initial reports showed higher incidence of anaphylaxis following messenger RNA COVID-19 vaccines compared with 'routine' vaccinations, likely influenced by the great attention paid to these 'new' vaccines. However, anaphylaxis has still to be considered quite rare and its incidence will be systematically reconsidered in the light of additional data collected. SUMMARY: Adverse reactions to vaccines are commonly reported but most of them are nonspecific mild events, whereas vaccine-related anaphylaxis is considered a rare event, with an incidence rate equal to 1.3 cases per million vaccine doses administered. As anaphylaxis reports usually start to be reported to passive pharmacovigilance during postmarketing surveillance, the first data are used to be influenced by under- and over-reporting and lack of denominators and following studies are needed to confirm the causal relationship. This might create an initial overcautiously approach to new immunization practices but, being anaphylaxis a potential life-threatening event, every suspected contraindication has to be deepened to maximize effectiveness and safety profile and constantly redefined not to exclude an overestimated population group who could receive the vaccine uneventfully.


Subject(s)
Anaphylaxis/diagnosis , Anaphylaxis/epidemiology , COVID-19 Vaccines/adverse effects , Anaphylaxis/immunology , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Female , Humans , Male , Vaccines/adverse effects , Vaccines/chemistry
8.
Stem Cell Res Ther ; 12(1): 316, 2021 06 02.
Article in English | MEDLINE | ID: covidwho-1255964

ABSTRACT

Coronavirus disease 2019 (COVID-19) may result in a life-threatening condition due to a hyperactive immune reaction to severe acute respiratory syndrome-coronavirus-2 infection, for which no effective treatment is available. Based on the potent immunomodulatory properties of mesenchymal stromal cells (MSCs), a growing number of trials are ongoing. This prompted us to carry out a thorough immunological study in a patient treated with umbilical cord-derived MSCs and admitted to the Intensive Care Unit for COVID-19-related pneumonia. The exploratory analyses were assessed on both peripheral blood and bronchoalveolar fluid lavage samples at baseline and after cellular infusion by means of single-cell RNA sequencing, flow cytometry, ELISA, and functional assays. Remarkably, a normalization of circulating T lymphocytes count paralleled by a reduction of inflammatory myeloid cells, and a decrease in serum levels of pro-inflammatory cytokines, mostly of interleukin-6 and tumor necrosis factor-α, were observed. In addition, a drop of plasma levels of those chemokines essential for neutrophil recruitment became evident that paralleled the decrease of lung-infiltrating inflammatory neutrophils. Finally, circulating monocytes and low-density gradient neutrophils acquired immunosuppressive function. This scenario was accompanied by an amelioration of respiratory, renal, inflammatory, and pro-thrombotic indexes. Our results provide the first immunological data possibly related to the use of umbilical cord-derived MSCs in severe COVID-19 context.


Subject(s)
COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , SARS-CoV-2 , Umbilical Cord
9.
Mod Pathol ; 34(8): 1444-1455, 2021 08.
Article in English | MEDLINE | ID: covidwho-1196829

ABSTRACT

Current understanding of the complex pathogenesis of COVID-19 interstitial pneumonia pathogenesis in the light of biopsies carried out in early/moderate phase and histology data obtained at postmortem analysis is discussed. In autopsies the most observed pattern is diffuse alveolar damage with alveolar-epithelial type-II cell hyperplasia, hyaline membranes, and frequent thromboembolic disease. However, these observations cannot explain some clinical, radiological and physiopathological features observed in SARS-CoV-2 interstitial pneumonia, including the occurrence of vascular enlargement on CT and preserved lung compliance in subjects even presenting with or developing respiratory failure. Histological investigation on early-phase pneumonia on perioperative samples and lung biopsies revealed peculiar morphological and morpho-phenotypical changes including hyper-expression of phosphorylated STAT3 and immune checkpoint molecules (PD-L1 and IDO) in alveolar-epithelial and endothelial cells. These features might explain in part these discrepancies.


Subject(s)
COVID-19/pathology , Cell Communication , Endothelial Cells/pathology , Epithelial Cells/pathology , Lung/pathology , B7-H1 Antigen/metabolism , Biopsy , COVID-19/metabolism , COVID-19/mortality , COVID-19/virology , Cytokines/metabolism , Endothelial Cells/metabolism , Endothelial Cells/virology , Epithelial Cells/metabolism , Epithelial Cells/virology , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Lung/metabolism , Lung/virology , Phosphorylation , Prognosis , STAT3 Transcription Factor/metabolism , Signal Transduction
10.
Respiration ; 100(6): 488-498, 2021.
Article in English | MEDLINE | ID: covidwho-1136133

ABSTRACT

BACKGROUND: The pathogenetic steps leading to Covid-19 interstitial pneumonia remain to be clarified. Most postmortem studies to date reveal diffuse alveolar damage as the most relevant histologic pattern. Antemortem lung biopsy may however provide more precise data regarding the earlier stages of the disease, providing a basis for novel treatment approaches. OBJECTIVES: To ascertain the morphological and immunohistochemical features of lung samples obtained in patients with moderate Covid-19 pneumonia. METHODS: Transbronchial lung cryobiopsy was carried out in 12 Covid-19 patients within 20 days of symptom onset. RESULTS: Histopathologic changes included spots of patchy acute lung injury with alveolar type II cell hyperplasia, with no evidence of hyaline membranes. Strong nuclear expression of phosphorylated STAT3 was observed in >50% of AECII. Interalveolar capillaries showed enlarged lumen and were in part arranged in superposed rows. Pulmonary venules were characterized by luminal enlargement, thickened walls, and perivascular CD4+ T-cell infiltration. A strong nuclear expression of phosphorylated STAT3, associated with PD-L1 and IDO expression, was observed in endothelial cells of venules and interstitial capillaries. Alveolar spaces macrophages exhibited a peculiar phenotype (CD68, CD11c, CD14, CD205, CD206, CD123/IL3AR, and PD-L1). CONCLUSIONS: Morphologically distinct features were identified in early stages of Covid-19 pneumonia, with epithelial and endothelial cell abnormalities different from either classical interstitial lung diseases or diffuse alveolar damage. Alveolar type II cell hyperplasia was a prominent event in the majority of cases. Inflammatory cells expressed peculiar phenotypes. No evidence of hyaline membranes and endothelial changes characterized by IDO expression might in part explain the compliance and the characteristic pulmonary vasoplegia observed in less-advanced Covid-19 pneumonia.


Subject(s)
COVID-19 , Lung Diseases, Interstitial , Autopsy , Endothelial Cells , Humans , Lung , SARS-CoV-2 , Tomography, X-Ray Computed
11.
Nat Commun ; 12(1): 1428, 2021 03 05.
Article in English | MEDLINE | ID: covidwho-1118806

ABSTRACT

Since the beginning of the SARS-CoV-2 pandemic, COVID-19 appeared as a unique disease with unconventional tissue and systemic immune features. Here we show a COVID-19 immune signature associated with severity by integrating single-cell RNA-seq analysis from blood samples and broncho-alveolar lavage fluids with clinical, immunological and functional ex vivo data. This signature is characterized by lung accumulation of naïve lymphoid cells associated with a systemic expansion and activation of myeloid cells. Myeloid-driven immune suppression is a hallmark of COVID-19 evolution, highlighting arginase-1 expression with immune regulatory features of monocytes. Monocyte-dependent and neutrophil-dependent immune suppression loss is associated with fatal clinical outcome in severe patients. Additionally, our analysis shows a lung CXCR6+ effector memory T cell subset is associated with better prognosis in patients with severe COVID-19. In summary, COVID-19-induced myeloid dysregulation and lymphoid impairment establish a condition of 'immune silence' in patients with critical COVID-19.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Aged , Aged, 80 and over , CD8-Positive T-Lymphocytes/immunology , COVID-19/blood , Case-Control Studies , Cytokines/immunology , Female , Humans , Male , Middle Aged , Monocytes/immunology , Myeloid Cells/immunology , Neutrophils/immunology , T-Lymphocytes/immunology
12.
Arterioscler Thromb Vasc Biol ; 40(12): 2975-2989, 2020 12.
Article in English | MEDLINE | ID: covidwho-1105571

ABSTRACT

OBJECTIVE: Pulmonary thrombosis is observed in severe acute respiratory syndrome coronavirus 2 pneumonia. Aim was to investigate whether subpopulations of platelets were programmed to procoagulant and inflammatory activities in coronavirus disease 2019 (COVID-19) patients with pneumonia, without comorbidities predisposing to thromboembolism. Approach and Results: Overall, 37 patients and 28 healthy subjects were studied. Platelet-leukocyte aggregates, platelet-derived microvesicles, the expression of P-selectin, and active fibrinogen receptor on platelets were quantified by flow cytometry. The profile of 45 cytokines, chemokines, and growth factors released by platelets was defined by immunoassay. The contribution of platelets to coagulation factor activity was selectively measured. Numerous platelet-monocyte (mean±SE, 67.9±4.9%, n=17 versus 19.4±3.0%, n=22; P<0.0001) and platelet-granulocyte conjugates (34.2±4.04% versus 8.6±0.7%; P<0.0001) were detected in patients. Resting patient platelets had similar levels of P-selectin (10.9±2.6%, n=12) to collagen-activated control platelets (8.7±1.5%), which was not further increased by collagen activation on patient platelets (12.4±2.5%, P=nonsignificant). The agonist-stimulated expression of the active fibrinogen receptor was reduced by 60% in patients (P<0.0001 versus controls). Cytokines (IL [interleukin]-1α, IL-1ß, IL-1RA, IL-4, IL-10, IL-13, IL, 17, IL-27, IFN [interferon]-α, and IFN-γ), chemokines (MCP-1/CCL2 [monocyte chemoattractant protein 1]), and growth factors (VEGF [vascular endothelial growth factor]-A/D) were released in significantly larger amounts upon stimulation of COVID-19 platelets. Platelets contributed to increased fibrinogen, VWF (von Willebrand factor), and factor XII in COVID-19 patients. Patients (28.5±0.7 s, n=32), unlike controls (31.6±0.5 s, n=28; P<0.001), showed accelerated factor XII-dependent coagulation. CONCLUSIONS: Platelets in COVID-19 pneumonia are primed to spread proinflammatory and procoagulant activities in systemic circulation.


Subject(s)
Blood Platelets/metabolism , COVID-19/blood , Thromboembolism/etiology , Aged , Aged, 80 and over , COVID-19/complications , Cytokines/metabolism , Female , Flow Cytometry , Humans , Male , Middle Aged , Pandemics , Prognosis , Thromboembolism/blood
13.
J Clin Invest ; 130(12): 6409-6416, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-1011054

ABSTRACT

BACKGROUNDPatients with coronavirus disease 2019 (COVID-19) develop pneumonia generally associated with lymphopenia and a severe inflammatory response due to uncontrolled cytokine release. These mediators are transcriptionally regulated by the JAK/STAT signaling pathways, which can be disabled by small molecules.METHODSWe treated a group of patients (n = 20) with baricitinib according to an off-label use of the drug. The study was designed as an observational, longitudinal trial and approved by the local ethics committee. The patients were treated with 4 mg baricitinib twice daily for 2 days, followed by 4 mg per day for the remaining 7 days. Changes in the immune phenotype and expression of phosphorylated STAT3 (p-STAT3) in blood cells were evaluated and correlated with serum-derived cytokine levels and antibodies against severe acute respiratory syndrome-coronavirus 2 (anti-SARS-CoV-2). In a single treated patient, we also evaluated the alteration of myeloid cell functional activity.RESULTSWe provide evidence that patients treated with baricitinib had a marked reduction in serum levels of IL-6, IL-1ß, and TNF-α, a rapid recovery of circulating T and B cell frequencies, and increased antibody production against the SARS-CoV-2 spike protein, all of which were clinically associated with a reduction in the need for oxygen therapy and a progressive increase in the P/F (PaO2, oxygen partial pressure/FiO2, fraction of inspired oxygen) ratio.CONCLUSIONThese data suggest that baricitinib prevented the progression to a severe, extreme form of the viral disease by modulating the patients' immune landscape and that these changes were associated with a safer, more favorable clinical outcome for patients with COVID-19 pneumonia.TRIAL REGISTRATIONClinicalTrials.gov NCT04438629.FUNDINGThis work was supported by the Fondazione Cariverona (ENACT Project) and the Fondazione TIM.


Subject(s)
Azetidines/administration & dosage , COVID-19 Drug Treatment , COVID-19 , Off-Label Use , Purines/administration & dosage , Pyrazoles/administration & dosage , SARS-CoV-2 , Sulfonamides/administration & dosage , Aged , Aged, 80 and over , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , COVID-19/blood , COVID-19/immunology , COVID-19/pathology , Cytokines/blood , Cytokines/immunology , Female , Humans , Longitudinal Studies , Male , Middle Aged , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Severity of Illness Index , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/pathology
14.
Cytotherapy ; 22(9): 474-481, 2020 09.
Article in English | MEDLINE | ID: covidwho-197744

ABSTRACT

Coronavirus disease 2019 (SARS-CoV2) is an active global health threat for which treatments are desperately being sought. Even though most people infected experience mild to moderate respiratory symptoms and recover with supportive care, certain vulnerable hosts develop severe clinical deterioration. While several drugs are currently being investigated in clinical trials, there are currently no approved treatments or vaccines for COVID-19 and hence there is an unmet need to explore additional therapeutic options. At least three inflammatory disorders or syndromes associated with immune dysfunction have been described in the context of cellular therapy. Specifically, Cytokine Release Syndrome (CRS), Immune Reconstitution Inflammatory Syndrome (IRIS), and Secondary Hemophagocytic Lymphohistiocytosis (sHLH) all have clinical and laboratory characteristics in common with COVID19 and associated therapies that could be worth testing in the context of clinical trials. Here we discuss these diseases, their management, and potential applications of these treatment in the context of COVID-19. We also discuss current cellular therapies that are being evaluated for the treatment of COVID-19 and/or its associated symptoms.


Subject(s)
Coronavirus Infections/etiology , Pneumonia, Viral/etiology , Adrenal Cortex Hormones/therapeutic use , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/physiopathology , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/therapy , Humans , Immune Reconstitution Inflammatory Syndrome/etiology , Immune Reconstitution Inflammatory Syndrome/therapy , Immunization, Passive , Interleukin-1/antagonists & inhibitors , Interleukin-6/antagonists & inhibitors , Killer Cells, Natural/immunology , Lymphohistiocytosis, Hemophagocytic/etiology , Lymphohistiocytosis, Hemophagocytic/therapy , Pandemics , Plasmapheresis , Pneumonia, Viral/physiopathology , STAT Transcription Factors/antagonists & inhibitors , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL